February 28, 2003

ANALYSIS PRELIMINARY EXAMINATION

(Answer any FIVE of the following eight questions)

- 1. Let x_n be a bounded sequence of elements in a separable Hilbert space \mathbb{H} . show that there exists a subsequence x_{n_k} which converges weakly.
- 2. (a) Give the definition of a measurable function $f: \mathbb{R} \to \mathbb{R}$. (b)Let f_n be a sequence of measurable functions on a measurable set E. Prove or disprove: the function $f = \limsup_{n \to \infty} f_n$ is measurable.
 - 3. Let f_n be a sequence of Lebesgue measurable functions on [0,1].
 - (a) Define convergence in L^p and in measure for f_n to a function f on [0,1].
- (b) Prove or disprove: The sequence f_n converges in L^p , $p \ge 1$, to f implies that f_n converges in measure to f.
- 4. Let (X, μ) be a measure space, $f \in L^1(X, \mu)$. Show that for any $\varepsilon > 0$ there exists $\delta > 0$ such that for any measurable set E satisfying $\mu(E) < \delta$ the following holds

$$\int_{E}|f|d\mu<\varepsilon$$

- 5. Let $\{f_n\}$ and $\{g_n\}$ be two sequences of measurable functions defined on $E \subset \mathbb{R}$ such that $\mu(E) < \infty$. Suppose that f_n converges to f in measure and g_n converges to g in measure. Prove or disprove: f_ng_n converges in measure to fg. Consider the same problem when $\mu(E) = \infty$.
- **6.** Let f be a continuous real-valued function, and let g be a (Lebesgue) measurable real-valued function, both defined on \mathbb{R} . Prove or disprove: the function h(x) = q(f(x)) is (Lebesgue) measurable.
 - 7. Compute $\lim_{n\to\infty} \int_{[0,n]} \left(1+\frac{x}{n}\right)^n e^{-2x} dx$.
- 8. If f_n is a sequence in $L^1(\mathbb{X}, \mu)$ which converges uniformly on \mathbb{X} to a function f, and if $\mu(\mathbb{X}) < +\infty$, then

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$$

1

- 7) Let $1 \le p \le \infty$. Suppose that $\{f_n\}$ is a sequence in $L^p[0,1]$ and that $\sum_{n=1}^{\infty} \|f_n\|_p < \infty$.
 - (a) Show that $\sum_{n=1}^{\infty} |f_n(x)| < \infty$ a.e.
 - (b) Let $f(x) = \sum_{n=1}^{\infty} f_n(x)$ a.e. Show that $f \in L^p[0,1]$ and that $||f||_p \leq \sum_{n=1}^{\infty} ||f_n||_p$.
- 8) Prove or disprove that a finite valued linear functional on a normed space X is discontinuous if and only if $F(\{x \in X : ||x-a|| < r\}) = \mathbb{R}$ for any $a \in X$ and any r > 0.