
Graph Theory Preliminary Examination

May 29, 2021

Instructions

Do exactly four of the five problems in Part A and do exactly four of the five problems

in Part B. Indicate clearly which problem in Part A and which problem in Part B you

have omitted. Each problem in Part A is valued at 10 points, while each problem in Part

B is valued at 15 points.

Hand in solutions to eight problems only. Begin your solution of each problem on a new

sheet of paper and write on one side of the paper only. You have six hours to complete the

exam.

When you are ready to hand in your exam, assemble your solutions in numerical order and

write your name on the front page.
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Part A

A1 Let T be a strong tournament of order n ≥ 3 and let D be a digraph obtained from T

by adding a new vertex v to T , joining v to each vertex of T , and directing the edges

incident with v in such a way that the indegree and outdegree of v are both positive.

Show that D is Hamiltonian.

A2 Let G be a bipartite graph with partite sets (bipartition) A and B where |A| =

|B| = n. Suppose that δ(G) ≥ n
2
. Use Hall’s theorem to prove that G has a perfect

matching.

A3 Let G be a 3-regular graph with chromatic index χ′(G) = 3. Suppose that the

partition of E(G) into three color classes is unique (in other words, there is a proper

3-coloring of the edges of G and this 3-coloring is essentially unique in the sense that

the only way to get another proper 3-coloring is to permute the colors). Prove that G

is Hamiltonian.

A4 It is well known that the Ramsey number R(3, 3) = 6 and the Ramsey number

R(4, 4) = 18. However, is it also known that for k ≥ 5, the Ramsey number R(k, k)

exists but is not known. Suppose that R(6, 6) = p. Prove that for every red-green-

yellow coloring of the edges of Kp, there is a red K6, or a green K3, or a yellow K3.

A5 The graph C5 has order 5, clique number 2, and chromatic number 3. The wheel

C5 ∨K1 has order 6, clique number 3, and chromatic number 4. In fact, for n ≥ 7,

the graph C5 ∨Kn−5 has order n, clique number n− 3, and chromatic number n− 2.

So, χ(C5 ∨Kn−5) = ω(C5 ∨Kn−5)+ 1. Prove that if G is a graph of order n ≥ 5 with

clique number ω(G) = n− 2, then χ(G) = n− 2.

2



Part B

B1 Let G be a graph. Show that χ(G) ≤ k if and only if G has an orientation with no

directed path of length k.

B2 A graph G of order 10 and size 30 is 2-cell embedded on the torus. Answer the

following questions, each with a brief explanation.

(a) How many regions are there in this embedding?

(b) Can G be embedded in the plane?

(c) What is the genus γ(G) of G?

(d) What is the genus γ(G+ uv) of G+ uv, where u and v are nonadjacent vertices

in G?

B3 Prove, for every positive integer k, that the complete graph K6k+4 is 3-factorable,

where each 3-factor is Hamiltonian.

B4 Let G be a graph with an edge xy such that x and y have degree at least k. Suppose

that G/xy (formed by contracting the edge xy) is k-connected. Prove that G is also

k-connected.

B5 For the path Pd+1 of diameter d, its domination number is γ(Pd+1) =
⌈
d
2

⌉
. Thus,

for every connected graph G of diameter d, γ(G) ≥
⌈
d
2

⌉
. It has been shown that

there exists a connected graph of diameter 2 having domination number 6. Whether

there are connected graphs of diameter 2 having domination number greater than 6

appears to be unknown. Even the graph with diameter 2 and domination number 6

was not easy to verify.

Let k ≥ 4 be an integer. A graph G of order k2 + 1 is constructed as follows. A

vertex v of G has degree k and has k neighbors are v1, v2, . . . , vk. For each integer i

with 1 ≤ i ≤ k, the vertex vi is adjacent to k − 1 vertices vi,1, vi,2, . . . , vi,k−1 in

addition to v. For 1 ≤ j ≤ k − 1, let Sj = {vi,j : 1 ≤ i ≤ k}. In particular,

S1 = {v1,1, v2,1, . . . , vk,1} and Sk−1 = {v1,k−1, v2,k−1, . . . , vk,k−1}. Thus, |Sj| = k for

1 ≤ j ≤ k− 1. We add an edge between every two vertices of Sj, that is, G[Sj] = Kk

for 1 ≤ j ≤ k − 1.

(a) Determine (with a brief explanation) the diameter of G.

(b) Determine (with explanation) the domination number of G.
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