WMU Department of Mathematics
 Algebra Comprehensive Exam
 August 25, 2017
 (Version 8/18/17)

Instructions. Write your solution to each problem on a separate sheet of paper, with your name at the top of each page. Please write clearly and legibly. You have 6 hours to complete this exam.

1. Let p be a prime, and let G be a group of order p^{4}. Assume that $Z(G)$ has order p^{2}. Find the number of conjugacy classes in G.
2. Let Ω be a set, G a group acting on Ω, and $\Omega^{(2)}$ the set of all pairs of distinct elements of Ω. We say that G acts sharply 2-transitively on Ω if for every pair of elements $a=(x, y)$ and $b=(z, w)$ of $\Omega^{(2)}$, there is a unique element of G taking a to b.
Let F be a field, and let

$$
G=\{f: F \rightarrow F: f(x)=m x+b \text { for some } m \neq 0, b \in F\} .
$$

(a) Show that G is a group that acts sharply 2 -transitively on F.
(b) Exhibit G as a semi-direct product of $(F,+)$ and F^{*}.
3. Suppose R is a Unique Factorization Domain (UFD), let K be the field of fractions of R, and let $f \in R \backslash\{0\}$. Show that the subset

$$
R_{f}=\left\{\frac{r}{f^{n}}: r \in R, n \in \mathbb{Z}\right\} \subset K
$$

is a UFD.
4. Let \mathbb{F}_{3} denote the field with three elements. Are the rings $\mathbb{F}_{3}[x] /\left(x^{3}-x-1\right)$ and $\mathbb{F}_{3}[x] /\left(x^{3}+x^{2}-1\right)$ fields? Are they isomorphic? If not, why not? If yes, give an explicit isomorphism between them.
5. Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} T \neq 0$ for every torsion abelian group T. Recall that an abelian group is a torsion group if all elements have finite order.
6. Let $\zeta=e^{\frac{2 \pi i}{37}}$, and $\alpha=\zeta+\zeta^{10}+\zeta^{26}$. Determine the degree of $\mathbb{Q}(\alpha)$ over \mathbb{Q}.
7. Let A and B be 3×3 matrices over a field F. If A and B have the same minimal polynomial and the same characteristic polynomial, prove that they are similar. Also, give an example of two 4×4 matrices over some field F with the same minimal and characteristic polynomials which are not similar.
8. Prove that every vector space has a basis. (This requires Zorn's lemma.)

