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Instructions. Work all of the following six problems. Write your solutions on the paper provided. Start
each solution at the top of a new sheet of paper, indicating the number of the problem on that page, and
write your name on each page. Solutions should be clear and complete. You have 6 hours to complete this
exam. No aids such as books, notes or internet access are permitted.

1. Let R ⊂ B be integral domains and assume that B is a free R-module of finite rank n ≥ 2.

(a) Show that B is isomorphic to a subalgebra of the R-algebra Mn(R), the ring of n×n matrices over
R. Hint: Given y ∈ B, consider the function µy : B → B defined by µy(x) = yx.

(b) Define the corresponding norm function ν : B → R and show that it is independent of the R-basis
of B.

(c) Let p ∈ Z be a prime integer. By explicit construction, find a subring of M2(Z) that is isomorphic
to B = Z[

√
p].

2. Determine with justification all groups of order 21 up to isomorphism.

3. Fix the integer n ≥ 1 and let Sn be the symmetric group on n letters. Define the field

E = Q(x1, . . . , xn) ∼= Q(n)

where Q is the field of rational numbers and let Sn act on E by fixing Q and:

σ(xi) = xσ(i) , σ ∈ Sn , 1 ≤ i ≤ n

(a) Define the elementary symmetric polynomials e1, . . . , en ∈ Q[x1, . . . , xn] where deg ei = i.
Hint: Given f ∈ E consider the polynomial 1

n!

∑
σ∈Sn

σ(f).

(b) Give a set of generators over Q for the fixed field ESn . (You do not need to prove your answer.)

(c) Let F = Q(e1, . . . , en) and let F̄ be the algebraic closure of F . Show that F ⊂ E ⊂ F̄ .
Hint: Consider the polynomial f(T ) = (T − x1) · · · (T − xn) ∈ E[T ].

4. Let F be a field and F ∗ the group of units of F .

(a) Show that every finite subgroup G of F ∗ is cyclic.
Hint: Use the Fundamental Theorem for Finitely Generated Abelian Groups to show that, if G is
not cyclic, then there exists d < |G| with xd = 1 for all x ∈ G.

(b) Prove or give a counterexample: Every finitely generated subgroup of F ∗ is cyclic.

5. Show that a unique factorization domain (UFD) is a normal domain, i.e., integrally closed in its field of
fractions.

6. Let G be a group and H a subgroup. Recall the following definitions.

1. The normalizer of H in G is NG(H) = {x ∈ G |xHx−1 = H}. Equivalently, NG(H) is the
stabilizer of H for G acting on subgroups by conjugation.

2. The normal hull of H in G is the subgroup HG generated by the set {xhx−1 |x ∈ G , h ∈ H}.
(a) Show that NG(H) is the largest subgroup S of G such that H is a normal subgroup of S.

(b) Show that HG is the smallest normal subgroup of G containing H.


