Analysis Preliminary Examination May 2019

Name:

Select ONLY 5 out of the following 7 problems:

1. Let f be a differentiable function such that $|f'(x)| \leq k$ for all $x \in R$ where k is a fixed constant. Define a sequence $\{x_n\}$ recursively by $x_1 = f(1)$ and $x_{n+1} = f(x_n)$. Prove or disprove: the sequence $\{x_n\}$ converges for the following two cases: (a) k < 1 and (b) k = 1.

2.

- (a) Prove that if $\sum_{n=1}^{\infty} a_n^2$ converges then so does $\sum_{n=1}^{\infty} a_n/n$.
- (b) Does the converse of (a) hold? Justify your answer.
- 3. (a) State the definition of a function to be measurable. (b) Prove that if both f and g are measurable functions then so is $f \cdot g$.
- 4. (a) Verify that $e^{-xy} \sin x$ is an integrable function on $[0, \infty) \times [0, \infty)$.
- (b) Show that $\int_0^\infty \sin x/x dx = \pi/2$. (Hint: Apply Fubini's thepreem to the function in part (a)).
- 5. (a) State the definition of linear bounded operator $A: X \to Y$ for Banach spaces X and Y.
 - (b) Is the following operator $A: C[0,1] \to C[0,1]$

$$Ax(t) := \int_0^t x(s) \ ds$$

linear and bounded? If it is bounded find its norm (note that C[0,1] is a space of continuous functions x(t) defined on the interval [0,1] with the norm $\|x\| := \max_{t \in [0,1]} |x(t)|$).

(c) Is the following operator $A: L_1[0,1] \to L_1[0,1]$

$$Ax(t) := x(\sqrt{t})$$

linear and bounded? If it is bounded find its norm (note that $L_1[0,1]$ is a space of integrable functions x(t) defined on the interval [0,1] with the norm $||x|| := \int_{[0,1]} |x(t)| \ dt$).

6. Let L be a finite-dimensional subspace of normed linear vector space X. This means that there are vectors e_1, e_2, \ldots, e_n in L such that any $z \in L$ is represented as a linear combination

$$z = c_1 e_1 + c_2 e_2 + \ldots + c_n e_n$$

Show that for any $x \in X$ there exists vector $y \in L$ such that

$$||x-y|| = \inf_{z \in L} ||x-z||$$

7. Let a sequence of measurable functions $f_n(t)$ on the interval [0, 1] converge to a function f(t) for almost all $t \in [0, 1]$ and for some constant M we have that for all n and almost all $t \in [0, 1]$

$$|f_n(t)| < M$$

Show that the sequence of functions

$$\phi_n(x) := \int_0^x (f_n(t) - f(t)) dt$$

converges uniformly to zero on the interval [0, 1]