Analysis Prelim

August 27, 2018

Solve any 5 of the following 7 problems.

- 1. Let A be the set of irrational numbers in the interval [0,1]. Prove that $m^*(A) = 1$.
- 2. Let A := [a, b]. Suppose that the $f : A \to \mathbb{R}$ is continuous, $g : A \to \mathbb{R}$ is integrable and $g(x) \geq 0$ for almost all $x \in A$.
 - (a) Show that the function f(x)g(x) is integrable.
 - (b) There exists a point $p \in A$ such

$$\int_{A} f(x)g(x) \ dx = f(p) \int_{A} g(x) \ dx \tag{1}$$

- (c) Is (1) valid in the case $A = [a, b] \cup [c, d]$ if $[a, b] \cap [c, d] = \emptyset$.
- 3. Let f be a function defined on [0,1] in the following way. If x belongs to the Cantor set, then f(x) = 0. If x belongs to a complementary interval of length 3^{-k} , then f(x) = k. Find $\int_{[0,1]} f$.
- 4. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of non-negative functions in $L^2(0,1)$, and suppose that $\{f_n\}$ converges to a function f in the norm of $L^2(0,1)$. Prove that $f \geq 0$. Does the statement remain true if $\{f_n\}$ converges weakly to f?
- 5. Recall that $\ell_2 := \{x = (x^1, x^2, \dots) : \sum_{k=1}^{\infty} x_k^2 < +\infty \}$ with norm $||x|| := \sqrt{\sum_{k=1}^{\infty} x_k^2}$ is a Hilbert space. We consider the following ellipse

$$E_a = \{x = (x^1, x^2, \ldots) \in \ell_2 : \sum_{k=1}^{\infty} \frac{(x^k)^2}{a_k^2} \le 1\}$$

(a) Show that the ellipse E_a is not sequentially compact for the case

$$a_k = 1, \quad k = 1, 2, \dots$$

(b) Show that the ellipse E_a is sequentially compact for the case

$$\sum_{k=1}^{\infty} a_k^2 < +\infty.$$

- 6. Let f_n be a sequence of nonnegative measurable functions on [0,1]. Moreover, suppose that $\lim_{n\to\infty}\int_0^1 f_n(x)d\mu=0$.

 (a) Prove or disprove: f_n converges to 0 in measure on [0,1]; and (b) Prove or disprove: f_n converges to 0 almost everywhere on [0,1].
- 7. Calculate

$$\int_0^1 \int_y^1 x^{-3/2} \cos\left(\frac{y}{x}\right) dx dy.$$