Analysis Prelim

August 25, 2014

Solve any 5 of the next 7 problems

- 1. (a) State Lusin's Theorem.
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be a Lebesgue measurable function. Prove that there exists a Borel measurable function $g: \mathbb{R} \to \mathbb{R}$ such f = g a.e. (with respect to the Lebesgue measure).
- 2. (a) Give the definition of weak convergence in a Banach space.
 - (b) Give an example of a (strongly) closed set that is not weakly closed and justify your example.
- 3. Let f be an absolutely continuous function on [0,1], such that f(0)=0 and

$$\int_0^1 |f'(x)|^2 dx < \infty.$$

Prove that

$$\lim_{x \to 0+} \frac{f(x)}{\sqrt{x}}$$

exists and calculate the value of this limit.

4. Calculate

$$\lim_{n \to \infty} \int_{0}^{1} n^{3} x^{3/4} (1 + n^{4} x^{2})^{-1} dx,$$

and justify your work.

- 5. (a) Give the definition of the convergence in measure.
 - (b) Let $\{f_n\}$ be a sequence of functions on \mathbb{R} that converges to a function f in measure, let $p \geq 1$, let $g \in L^p(\mathbb{R})$ and suppose that $|f_n(x)| \leq g(x)$, for all $n \in \mathbb{N}$ and all $x \in \mathbb{R}$. Prove that $\{f_n\}$ converges to f in the norm of $L^p(\mathbb{R})$.
 - (c) Give an example of a sequence $\{f_n\}$ in $L^p(\mathbb{R})$ that converges to a function f in measure but not in the norm of $L^p(\mathbb{R})$.
- 6. (a) State Fubini's Theorem.
 - (b) Apply Fubini's Theorem to calculate

$$\int_{E} \frac{y}{x} e^{-x} \sin x \, d\mu$$

where μ is the product of Lebesgue measure on \mathbb{R} with itself, and $E = \{(x, y) : 0 \le y \le \sqrt{x}\}.$

7. Let $\{f_n\}$ and f be functions in $L^2(\mathbb{R})$. Prove that $\{f_n\}$ converges to f strongly (in the norm of $L^2(\mathbb{R})$) if and only if $\{f_n\}$ converges weakly to f and $||f_n|| \to ||f||$.