Designing Community-Aware Charging Networks for Electric Vehicles

Sina Faridimehr, PhD Candidate
Saravanan Venkatachalam, Assistant Professor
Ratna Babu Chinnam, Professor
Industrial and Systems Engineering Department
Wayne State University

Outline

- Motivation
- Key Literature
- Problem Description
- Uncertainties and Data Analysis
- Solution Approach
- Computational Study
- Future Research

Motivation

- Promise of Electric Vehicles (EV):
 - Diversification of the transportation energy feedstock
 - Reduction of greenhouse gas and other emissions
 - Improving public health by improving local air quality
- Direct and indirect policy incentives for EV market share growth:
 - Public charger availability is an indirect policy incentive
 - The most strongly related variable among several socio-economic ones to EV adoption (Sierzchula et al., 2014)
- Key decisions for EV charging network infrastructure:
 - Number and location of charging service stations
 - Type of charging stations

Key Literature: Deterministic

- Capar, I. et al., 2013. Arc cover-path-cover formulation and strategic analysis of alternative-fuel station locations
 - Presented a computationally efficient model for flow-refueling location model
 - Provided insights for managerial concerns such as OD demand forecasting uncertainty, robustness of optimal locations in regard to vehicle driving ranges
- Cavadas, J. et al. 2015. MIP model for locating slow-charging stations for EVs in urban areas accounting for driver tours
 - Locate slow-charging stations for EVs in an urban environment
 - Possibility of several stops by each driver during the day and the driver can only charge the vehicle at one of these locations
 - Impact of considering demand transference can be rather high in networks where demand is relatively low

Key Literature: Stochastic

- Tan, J. & Lin, W., 2014. Stochastic flow capturing location and allocation model for siting EV charging stations
 - Compared a deterministic case where charging demand is fixed over time to a stochastic one where consumer demand for charging service is random
 - Stochastic programming (SP) provides more realistic results
- Hosseini, M. & MirHassani, S.A., 2015. Refueling-station location problem under uncertainty
 - Two-stage SP to locate permanent and portable charging stations with and without considering capacities to maximize the served traffic flows
 - Stochastic models firstly try to cover trips between large cities
 - Permanent stations get located in and around heavily populated nodes

Problem Description

Model for EV Charging Station Network Design

Research Gap:

- Focus on large-scale state-wide networks and not on urban areas
- Deterministic charging demand
 - Demand is quite stochastic in reality (varying by hour of day, weekday/ weekend patterns, commute purpose, destination, etc)

Research Goal:

- Develop a stochastic programming approach to determine location and capacity of charging stations
 - Assess community livability metrics
 - Accessibility to charging service
 - Charging station utilization rate
 - Walkability
 - Account for behaviors of EV drivers
 - Willingness to walk
 - Willingness to use public charging stations

Assumptions:

- Public parking facilities
- Semi-rapid chargers
- Vehicle parking location
- Vehicle charging time

Uncertainties and Data Analysis

The expected breakdown of vehicle arrival percentages for weekdays (left) and weekends (right).

Data	Coursess
Dala	Sources:

Brooker, R., Qin, N., 2015. Identification of potential locations of electric vehicle supply equipment. Yang, Y., Diez-Roux, A., 2012. Walking distance by trip purpose and population subgroups.

Factor	Category	ß
	Winter (Dec-Feb)	1.88
Season	Spring (Mar-May)	1.68
Sea5011	Summer (Jun-Aug)	1.64
	Autumn (Sep-Nov)	1.7
	Northeast	1.85
Domina	Midwest	1.65
Region	South	1.76
	West	1.65
	Town and County	1.65
Community	Suburban	1.63
Ecti	Urban mated parameters fo	1.78

distance decay function

Uncertainties and Data Analysis ...

Cumulative 2010-2014 BEV market share (left) and PHEV market share (right) across the U.S.

Source: Vergis, S., Chen, B., 2015. Comparison of plug-in electric vehicle adoption in the United States: A state by state approach.

US DoT:

- Share of vehicles needing charging can reach 5%
 - PHEV share would be $\sim 2\%$ and BEV $\sim 3\%$
- 3.5% of fleet projected to be full EV or PHEV by 2022-2025
 - California Zero Emission Vehicles (ZEV) program considered in reference case
 - Adoption of ZEV program by nine additional states

Solution Approach

Maximizes accessibility to public EV charging service!

Solution Approach: Notation

Sets

S:Set of parking lots, indexed by $s \in S$

 $L \downarrow s$: Set of number of charging stations in location s, indexed by $l \in L \downarrow s$

T:Set of time slots, indexed by $t \in T$

B:Set of buildings, indexed by *b*∈ *B*

 Γ :Set of arrival and departure times, indexed by $\gamma(t) \in \Gamma$ containing time slot $t \in T$ Ω:Set of scenarios

Fixed Model Parameters

p:Number of **candidate locations** for installing charging stations mll:Number of **charging stations**, $l \in Lls$

Scenario Dependent Parameters

 $d\downarrow \gamma(t), b, s$ (ω): **Demand** with arrival and departure time of $\gamma(t) \in \Gamma$ for a given $t \in T$ for **building** b that are **willing to park** their vehicle in **location** $s \in ST'$, $ST' \subset S$ in

Firste Starge Decision Variables

 $x \downarrow s$:1 if **location** $s \in S$ is selected for installing charging stations.

 $z \downarrow l, s:1$ if $l \in L \downarrow s$ charging capacity is installed in location $s \in S$.

Second-Stage Decision Variables

 $y \downarrow y(t), p,s$ (ω):Proportion of demand with arrival and departure time of $y(t) \in \Gamma$ for a given $t \in T$ for building b that are willing to charge their vehicle in location

 $s \in S \uparrow , S \uparrow \subset S$ in scenario $\omega \in \Omega$

Solution Approach: Model

First-Stage Model

$$Max f(x,z)=E[\varphi(x,z,\omega)]$$

 ${\cal P}$ locations for installing charging stations:

$$\sum s \in S \uparrow \equiv x \downarrow s = p$$

Charging capacity in each location:

$$\sum l \in L \downarrow s \uparrow \equiv z \downarrow l, s \leq 1 \quad \forall s \in S \\ z \downarrow l, s \leq x \downarrow s \quad \forall l \in L \downarrow s , s \in S$$

Feasible set for the binary first-stage variables:

$$x \downarrow s, z \downarrow l, s \in \{0,1\} \quad \forall l \in L \downarrow s, s \in S$$

Second-Stage Model

$$\varphi(x,z,\omega) = Max \sum_{t \in T, \gamma(t) \in \Gamma, b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b, s (\omega) * d \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b, s (\omega) * d \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b, s (\omega) * d \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b, s (\omega) * d \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b, s (\omega) * d \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b, s (\omega) * d \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \uparrow \equiv y \downarrow \gamma(t), b \in B, s \in S \downarrow \gamma(t), b \in S \downarrow \gamma(t), b$$

Supply-demand balance:

Demand assignment to parking lots:

$$\sum s \in S \uparrow \equiv y \downarrow \gamma(t), b, s(\omega) \le 1 \quad t \in T, \gamma(t) \in \Gamma, b \in B$$

 $y \downarrow \gamma(t), b, s(\omega) \ge 0 \quad \forall \gamma(t) \in \Gamma, b \in B, s \in S, t \in T$

Solution Approach: SAA

Sample Average Approximation

- **Optimal SP solution** \cong solution for **sample scenario set** (Mak et al., 1999)
- **Estimating required number of scenarios:**
 - Estimate **upper bound** for optimal solution:
 - Generate M sample scenario sets of size N, i.e. $(\omega \downarrow j \uparrow 1 , \omega \downarrow j \uparrow 2 , ..., \omega \downarrow j \uparrow N)$ for \mathcal{O}_{j} \mathcal{L}_{j} \mathcal{O}_{j} \mathcal{O}_{j}

Estimate **lower bound** for optimal solution:

- Estimating UB is not easy as it needs decomposition algorithms but getting LB is easier even. though it needs high number of scenarios. $gap = \vartheta \downarrow N, M - f(x, z)$ $\sigma \downarrow gap \uparrow 2 = \sigma \downarrow \vartheta \downarrow N_{\uparrow}M \uparrow 2 + \sigma \downarrow N \downarrow \uparrow \uparrow \uparrow 2$
- Estimating **optimality gap** and its **quality**:

Solution Approach: Heuristic

SAA requires high computational resources

Algorithm 1 Pseudo-code of the heuristic

- 1: $best solution \leftarrow \emptyset$.
- 2: **for** $s \leftarrow 1$ to Number of Parking Lots **do**:
- 3: Compute score measure r_s .
- 4: end for
- 5: Construction phase:
- 6: $initial solution \leftarrow \emptyset$
- 7: Compute attractiveness ratio ρ_s for all parking lots.
- 8: Add parking lots to the initial solution in decreasing order of the attractiveness ratio until p parking lots are selected.
- 9: Improvement phase:
- 10: $current solution \leftarrow initial solution$
- 11: **while** f(current solution) can be improved **do**
- 12: remove-insert(currentsolution)
- 13: end while
- 14: Store best solution found so far.

$$r \downarrow s = \sum s, s \uparrow' \in S, s \neq s \uparrow' \uparrow @ c \downarrow s e \uparrow S f'$$
: Charging capacity of parking lot S .

$$d\downarrow ss1'$$

: Distance between parking lot ${\mathcal S}$

$$\rho \downarrow s = r \downarrow s q \downarrow s$$

and parking lot
$$\mathcal{ST}$$
.

Computational Study: Case Study

- Setting: Part of Detroit Midtown
 - Wide range of employment types (type of final destination) in this area
 - University faculties
 - Offices
 - Hospitals
 - Museums
 - Attracts a lot of traffic
 - 32 parking lots as potential locations for installing charging stations
- EV Market Share: Two Cases
 - Conservative: (1%,2%) for (BEV,PHEV)
 - Optimistic: (2%,3%) for (BEV,PHEV)

Computational Study: SAA and Heuristic

SAA perf. when (M,N') = (20,1,000) and (BEV,PHEV) = (1%,2%)

p	N	UB (%)	LB (%)	gap (%)	gap SD	Opt (s)	Heuristic (%)	Heuristic (s)
	30	57.98	56.59	2.39	0.0064	397	57.98	68
2	50	58.70	58.25	0.77	0.0062	1,226	58.70	74
	100	58.56	58.54	0.02	0.0055	4,564	58.56	93
	30	73.89	73.42	0.63	0.0056	720	73.88	114
4	50	74.61	73.85	1.02	0.0041	1,759	74.61	131
	100	74.59	73.74	1.14	0.0040	7,406	74.59	193
	30	83.97	83.62	0.35	0.0039	1,071	83.21	160
6	50	84.11	83.80	0.31	0.0034	2,173	83.17	186
	100	83.40	83.30	0.10	0.0031	9,572	82.86	303
	30	91.16	90.61	0.61	0.0026	1,124	90.28	185
8	50	91.13	90.78	0.38	0.0021	3,099	90.18	245
	100	90.87	90.86	0.02	0.0018	12,832	90.11	414

SAA perf. when (M,N') = (20,1,000) and (BEV,PHEV) = (2%,3%)

p	N	UB (%)	LB (%)	gap (%)	gap SD	Opt (s)	Heuristic (%)	Heuristic (s)
	30	50.42	50.00	0.85	0.0056	462	50.42	82
2	50	50.91	50.10	1.58	0.0054	1,141	50.91	87
	100	50.91	50.31	1.17	0.0048	4,761	50.91	106
	30	63.35	63.16	0.30	0.0064	1,595	63.33	169
4	50	63.19	63.11	0.13	0.0063	3,644	63.19	211
	100	63.46	63.42	0.07	0.0057	16,656	63.41	317
	30	72.56	71.55	1.39	0.0071	1,663	72.34	208
6	50	72.04	71.46	0.81	0.0059	3,246	71.84	273
	100	71.82	71.40	0.58	0.0050	12,165	71.73	474
	30	78.91	78.49	0.52	0.0048	1,494	78.53	273
8	50	79.44	78.92	0.66	0.0045	2,908	79.01	374
	100	79.12	78.69	0.54	0.0044	12,248	78.70	667

Comparison of exact running time vs. heuristic running time for ap=4

b) p=8 cases when (BEV,PHEV) = (1%,2%).

Computational Study: Settings

- Willingness to walk patterns in community:
 - Optimistic: High willingness to walk
 - Pessimistic: Low willingness to walk
- Performance measures of public EV charging placement:
 - Accessibility
 - Lost demand
 - Charging utilization rate
 - Total walking distance
 - Walking distance per capita

Computational Study: Insights

Percentage of accessibility, lost demand and charging utilization in A) (1%, 2%) and B) (2%,3%) market shares.

Average hourly utilization in A) weekdays and B) weekends in an optimistic case when p=2, left, and p=6, right.

Computational Study: Insights ...

A) Total walking distance and B) walking distance per capita for people with access to EV charging service B) (BEV,PHEV) market shares are (1%,2%), left, and (2%,3%), right.

Accessibility for different average of willingness to walk distribution when (BEV,PHEV) market shares are (1%,2%).

Computational Study: Value of Stochastic Solution

Assess Usefulness of SP Approach

Recourse problem:

$$RP = E \downarrow \Omega \left[\varphi(x, z, \omega) \right]$$

Expected value problem:

$$EV = \varphi(x,z,\omega)$$

• (x,z) is the result of EV, the expected result of using expected value solution:

$$EEV=E\downarrow\Omega \left[\varphi(x,z,\omega)\right]$$

Median of value of stochastic solution for five different runs and different values of p and EV market share.

Future Research

- Our model could be used to design incentive mechanism for charging station operators to finalize location decisions
 - We will develop an incentive allocation model which will optimize the allocation of incentive resources across multiple charging stations to influence their optimal locations
- Assess the impact of behavioral uncertainties by a social scientist
- We used expected value (risk-neutral) function for twostage model.
 - What is the impact of including risk-measures in the objective function on optimal location and capacity of EV charging stations in the community?
- Inclusion of multi-modal transportation in the model.

Study of impact of multi-modal transportation on EV network design

Contribution

Designing Community-Aware Charging Networks for EVs

- Two-stage SP model to determine location and capacity of public EV charging stations for communities to maximize access
- Incorporation of uncertainties (EV demand flows, EV drivers' charging patterns, arrival and departure time, purpose of arrival to a community, walking preferences)
- Adoption of SAA to solve two-stage model
- Effective heuristic for large-scale instances
- Case study (Detroit midtown area) and post-analysis framework

Designing Community-Aware Charging Networks for EVs

- Exploration and Integration: Called for data from several different sources to generate meaningful formulation and scenarios
- Model presented to SEMCOG
- **Computational Complexity:** Several hours for large scenario set

Presentations

- Manuscript submitted to IEEE Transactions on Intelligent Transportation Systems (Jan 2017)
- Presented:
 - INFORMS National Meeting, 2016

Thank You!