WMU Department of Mathematics Algebra Comprehensive Exam August 25, 2017 (Version 8/18/17)

Instructions. Write your solution to each problem on a separate sheet of paper, with your name at the top of each page. Please write clearly and legibly. You have 6 hours to complete this exam.

- 1. Let p be a prime, and let G be a group of order p^4 . Assume that Z(G) has order p^2 . Find the number of conjugacy classes in G.
- 2. Let Ω be a set, G a group acting on Ω , and $\Omega^{(2)}$ the set of all pairs of distinct elements of Ω . We say that G acts sharply 2-transitively on Ω if for every pair of elements a=(x,y) and b=(z,w) of $\Omega^{(2)}$, there is a unique element of G taking a to b.

Let F be a field, and let

$$G = \{ f : F \to F : f(x) = mx + b \text{ for some } m \neq 0, b \in F \}.$$

- (a) Show that G is a group that acts sharply 2-transitively on F.
- (b) Exhibit G as a semi-direct product of (F, +) and F^* .
- 3. Suppose R is a Unique Factorization Domain (UFD), let K be the field of fractions of R, and let $f \in R \setminus \{0\}$. Show that the subset

$$R_f = \left\{ \frac{r}{f^n} : r \in R, n \in \mathbb{Z} \right\} \subset K$$

is a UFD.

- 4. Let \mathbb{F}_3 denote the field with three elements. Are the rings $\mathbb{F}_3[x]/(x^3-x-1)$ and $\mathbb{F}_3[x]/(x^3+x^2-1)$ fields? Are they isomorphic? If not, why not? If yes, give an explicit isomorphism between them.
- 5. Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} T \neq 0$ for every torsion abelian group T. Recall that an abelian group is a torsion group if all elements have finite order.
- 6. Let $\zeta = e^{\frac{2\pi i}{37}}$, and $\alpha = \zeta + \zeta^{10} + \zeta^{26}$. Determine the degree of $\mathbb{Q}(\alpha)$ over \mathbb{Q} .
- 7. Let A and B be 3×3 matrices over a field F. If A and B have the same minimal polynomial and the same characteristic polynomial, prove that they are similar. Also, give an example of two 4×4 matrices over some field F with the same minimal and characteristic polynomials which are not similar.
- 8. Prove that every vector space has a basis. (This requires Zorn's lemma.)