Analysis Preliminary Examination
 October 24, 2020

Solve any 5 of the following 8 problems.

1. Prove or disprove: If A, B are Lebesgue measurable subsets of \mathbb{R}^{2} then so is $A+B$. Here $A+B=\{x+y: x \in A, y \in B\}$.
2. Prove or disprove: The set of continuous function on $[0,1]$ is dense in $L^{\infty}[0,1]$.
3. Let X be the normed linear space whose elements are all continuous function on $[0,1]$, and the norm is given by

$$
\|f\|=\int_{0}^{1}|f|
$$

Prove that X is not a Banach space.
4. Let $\left\{f_{n}\right\}$ be a sequence in $L^{2}[0,2 \pi]$ defined by $f_{n}(x)=\sin n x$. Prove that $\left\{f_{n}\right\}$ converges weakly but not strongly (i.e., in the norm of $L^{2}[0,2 \pi]$).
5. Suppose that μ and ν are finite measures on a measureable space (X, \mathfrak{M}). Prove that there exists a nonnegative measurable function f on X such that for all $E \in \mathfrak{M}$

$$
\int_{E}(1-f) d \mu=\int_{E} f d \nu
$$

6. Let m^{*} be the Lebesgue outer measure on \mathbb{R}. Prove that a bounded set $E \subset \mathbb{R}$ is Lebesgue measurable if and only if for any $\varepsilon>0$ there exists a closed subset $F \subset E$ such that $m^{*}(E-F)<\varepsilon$.
7. Let A be a subset of \mathbb{R} with finite Lebesgue measure, and let f be a measurable function on A. Prove that f is integrable on A if and only if both of the following series converge.

$$
\begin{gathered}
\sum_{k=1}^{\infty} k m(\{x \in A: k \leq|f(x)|<k+1\}) \\
\sum_{k=1}^{\infty} m(\{x:|f(x)| \geq k\})
\end{gathered}
$$

8. Let f and g be two measurable functions on a measurable space (X, \mathfrak{M}). Prove that their product $f g$ is also measurable.
