Analysis Preliminary Examination October 24, 2020

Solve any 5 of the following 8 problems.

- 1. Prove or disprove: If A, B are Lebesgue measurable subsets of \mathbb{R}^2 then so is A + B. Here $A + B = \{x + y : x \in A, y \in B\}$.
- 2. Prove or disprove: The set of continuous function on [0,1] is dense in $L^{\infty}[0,1]$.
- 3. Let X be the normed linear space whose elements are all continuous function on [0,1], and the norm is given by

$$||f|| = \int_0^1 |f|.$$

Prove that X is not a Banach space.

- 4. Let $\{f_n\}$ be a sequence in $L^2[0, 2\pi]$ defined by $f_n(x) = \sin nx$. Prove that $\{f_n\}$ converges weakly but not strongly (i.e., in the norm of $L^2[0, 2\pi]$).
- 5. Suppose that μ and ν are finite measures on a measureable space (X, \mathfrak{M}) . Prove that there exists a nonnegative measurable function f on X such that for all $E \in \mathfrak{M}$

$$\int_{E} (1 - f) \, d\mu = \int_{E} f \, d\nu.$$

- 6. Let m^* be the Lebesgue outer measure on \mathbb{R} . Prove that a bounded set $E \subset \mathbb{R}$ is Lebesgue measurable if and only if for any $\varepsilon > 0$ there exists a closed subset $F \subset E$ such that $m^*(E-F) < \varepsilon$.
- 7. Let A be a subset of \mathbb{R} with finite Lebesgue measure, and let f be a measurable function on A. Prove that f is integrable on A if and only if both of the following series converge.

$$\sum_{k=1}^{\infty} k \, m(\{x \in A : k \le |f(x)| < k+1\})$$
$$\sum_{k=1}^{\infty} m(\{x : |f(x)| \ge k\})$$

8. Let f and g be two measurable functions on a measurable space (X, \mathfrak{M}) . Prove that their product fg is also measurable.