# Analysis Preliminary Examination May 2019 

Name:
Select ONLY 5 out of the following 7 problems:

1. Let $f$ be a differentiable function such that $\left|f^{\prime}(x)\right| \leq k$ for all $x \in R$ where $k$ is a fixed constant. Define a sequence $\left\{x_{n}\right\}$ recursively by $x_{1}=f(1)$ and $x_{n+1}=f\left(x_{n}\right)$. Prove or disprove: the sequence $\left\{x_{n}\right\}$ converges for the following two cases: (a) $k<1$ and (b) $k=1$.
2. 

(a) Prove that if $\sum_{n=1}^{\infty} a_{n}^{2}$
converges then so does $\sum_{n=1}^{\infty} a_{n} / n$.
(b) Does the converse of (a) hold? Justify your answer.
3. (a) State the definition of a function to be measurable. (b) Prove that if both $f$ and $g$ are measurable functions then so is $f \cdot g$.
4. (a) Verify that $e^{-x y} \sin x$ is an integrable function on $[0, \infty) \times[0, \infty)$.
(b) Show that $\int_{0}^{\infty} \sin x / x d x=\pi / 2$. (Hint: Apply Fubini's thepreem to the function in part (a)).
5. (a) State the definition of linear bounded operator $A: X \rightarrow Y$ for Banach spaces $X$ and $Y$.
(b) Is the following operator $A: C[0,1] \rightarrow C[0,1]$

$$
A x(t):=\int_{0}^{t} x(s) d s
$$

linear and bounded? If it is bounded find its norm (note that $C[0,1]$ is a space of continuous functions $x(t)$ defined on the interval $[0,1]$ with the norm $\left.\|x\|:=\max _{t \in[0,1]}|x(t)|\right)$.
(c) Is the following operator $A: L_{1}[0,1] \rightarrow L_{1}[0,1]$

$$
A x(t):=x(\sqrt{t})
$$

linear and bounded? If it is bounded find its norm (note that $L_{1}[0,1]$ is a space of integrable functions $x(t)$ defined on the interval $[0,1]$ with the norm $\left.\|x\|:=\int_{[0,1]}|x(t)| d t\right)$.
6. Let $L$ be a finite-dimensional subspace of normed linear vector space $X$. This means that there are vectors $e_{1}, e_{2}, \ldots, e_{n}$ in $L$ such that any $z \in L$ is represented as a linear combination

$$
z=c_{1} e_{1}+c_{2} e_{2}+\ldots+c_{n} e_{n}
$$

Show that for any $x \in X$ there exists vector $y \in L$ such that

$$
\|x-y\|=\inf _{z \in L}\|x-z\|
$$

7. Let a sequence of measurable functions $f_{n}(t)$ on the interval $[0,1]$ converge to a function $f(t)$ for almost all $t \in[0,1]$ and for some constant $M$ we have that for all $n$ and almost all $t \in[0,1]$

$$
\left|f_{n}(t)\right| \leq M
$$

Show that the sequence of functions

$$
\phi_{n}(x):=\int_{0}^{x}\left(f_{n}(t)-f(t)\right) d t
$$

converges uniformly to zero on the interval $[0,1]$

