Analysis Prelim

August 27, 2018

Solve any 5 of the following 7 problems.

1. Let A be the set of irrational numbers in the interval $[0,1]$. Prove that $m^{*}(A)=1$.
2. Let $A:=[a, b]$. Suppose that the $f: A \rightarrow \mathbb{R}$ is continuous, $g: A \rightarrow \mathbb{R}$ is integrable and $g(x) \geq 0$ for almost all $x \in A$.
(a) Show that the function $f(x) g(x)$ is integrable.
(b) There exists a point $p \in A$ such

$$
\begin{equation*}
\int_{A} f(x) g(x) d x=f(p) \int_{A} g(x) d x \tag{1}
\end{equation*}
$$

(c) Is (1) valid in the case $A=[a, b] \cup[c, d]$ if $[a, b] \cap[c, d]]=\emptyset$.
3. Let f be a function defined on $[0,1]$ in the following way. If x belongs to the Cantor set, then $f(x)=0$. If x belongs to a complementary interval of length 3^{-k}, then $f(x)=k$. Find $\int_{[0,1]} f$.
4. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of non-negative functions in $L^{2}(0,1)$, and suppose that $\left\{f_{n}\right\}$ converges to a function f in the norm of $L^{2}(0,1)$. Prove that $f \geq 0$. Does the statement remain true if $\left\{f_{n}\right\}$ converges weakly to f ?
5. Recall that $\ell_{2}:=\left\{x=\left(x^{1}, x^{2}, \ldots\right): \sum_{k=1}^{\infty} x_{k}^{2}<+\infty\right\}$ with norm $\|x\|:=$ $\sqrt{\sum_{k=1}^{\infty} x_{k}^{2}}$ is a Hilbert space. We consider the following ellipse

$$
E_{a}=\left\{x=\left(x^{1}, x^{2}, \ldots\right) \in \ell_{2}: \sum_{k=1}^{\infty} \frac{\left(x^{k}\right)^{2}}{a_{k}^{2}} \leq 1\right\}
$$

(a) Show that the ellipse E_{a} is not sequentially compact for the case

$$
a_{k}=1, \quad k=1,2, \ldots
$$

(b) Show that the ellipse E_{a} is sequentially compact for the case

$$
\sum_{k=1}^{\infty} a_{k}^{2}<+\infty
$$

6 . Let f_{n} be a sequence of nonnegative measurable functions on $[0,1]$. Moreover, suppose that $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d \mu=0$.
(a) Prove or disprove: f_{n} converges to 0 in measure on $[0,1]$; and
(b) Prove or disprove: f_{n} converges to 0 almost everywhere on $[0,1]$.
7. Calculate

$$
\int_{0}^{1} \int_{y}^{1} x^{-3 / 2} \cos \left(\frac{y}{x}\right) d x d y
$$

