## Analysis Prelim

August 30, 2016

## Solve any 5 of the next 7 Problems

1. Define $E=\left\{x \in[0,1]:\left|x-\frac{p}{q}\right|<q^{-3}\right.$ for infinitely many $\left.p, q \in \mathbb{N}\right\}$. Prove that $m(E)=0$.
2. Let $f:[0,1] \rightarrow \mathbb{R}$, and suppose that the set $\{x \in[0,1]: f(x)=c\}$ is (Lebesgue) measurable for every $c \in \mathbb{R}$. Prove or disprove: $f$ is a (Lebesgue) measurable function.
3. Let $f$ be a function defined on $[0,1]$ that is integrable over $[0,1]$, differentiable at $x=0$, and $f(0)=0$. Let

$$
g(x)= \begin{cases}x^{-3 / 2} f(x), & \text { if } 0<x \leq 1 \\ 0, & \text { if } x=0\end{cases}
$$

Prove that $g$ is integrable over $[0,1]$.
4. Calculate the Lebesgue integral

$$
\int_{0}^{2} \int_{y^{2}}^{4} y \cos \left(x^{2}\right) d x d y
$$

5. Let $\left\{x_{n}\right\}$ be an unbounded sequence in Hilbert space $\mathcal{H}$. Prove that there exists a vector $x \in \mathcal{H}$ such that the sequence $\left\{\left\langle x_{n}, x\right\rangle\right\}$ is unbounded.
6. Calculate

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{1}{1+x^{\frac{\sqrt{n}}{\ln (n+2016)}}} d x
$$

and justify your work.
7. Let $X$ be the set of functions of bounded variations on $[0,1]$, with the property that $f(0)=0$. Let $T V(f)$ denote the total variation of $f \in X$ over the interval $[0,1]$.
(a) Prove that $T V(f)$ is a norm on $X$.
(b) Prove that $X$ is complete with respect to this norm.

