Analysis Prelim

March 13, 2015

Solve any 5 of the next 8 problems

- 1. Suppose that f is a function of bounded variation on [0,1], and let V(x) be the total variation function for f, i.e., for any $x \in [0,1]$, V(x) is the total variation of f on the interval [0,x]. Prove that, if V is absolutely continuous on [0,1], then so is f.
- 2. Let (X, β, μ) be a finite measure space and let $f \in L^1(\mu) \cap L\infty(\mu)$. Show that $\lim_{p\to\infty} \|f\|_p = \|f\|_{\infty}$.
- 3. (a) State the Riesz Representation Theorem for the Dual of $L^p(E)$.
 - (b) Let E be a measurable set, let p and q be positive numbers such that 1/p + 1/q = 1, and let S be a dense subset of $L^q(E)$. Show that if $g \in L^p(E)$ and $\int_E fg = 0$ for all $f \in S$, then g = 0.
- 4. Suppose that λ and μ are σ -finite measures on the same σ -algebra \mathcal{M} , and that λ is absolutely continuous with respect to μ . Define ν on \mathcal{M} by $\nu(E) = \lambda(B \cap E)$ where B is a fixed member of \mathcal{M} .
 - (a) Prove that ν is a measure on \mathcal{M} .
 - (b) Prove that ν is absolutely continuous with respect to μ .
 - (c) Find the Radon-Nikodym derivative of ν with respect to μ .
- 5. (a) State the Uniform Boundedness Principle.
 - (b) Prove that every weakly convergent sequence in Hilbert space must be bounded.

6. Let (X, μ) be a σ -finite complete measure space and let $f: X \to [0, \infty)$ be measurable. Prove that

$$\int_X f \, d\mu = \int_0^\infty \mu \left(\left\{ x \in X : f(x) \ge t \right\} \right) \, dt.$$

- 7. (a) Give the definition of a measurable space (X, β) .
 - (b) Define what it means for a real valued function f to be measurable on a measurable space (X, β) .
 - (c) Suppose that f is measurable on a measurable space (X, β) and B is a Borel set in the real line. Prove or disprove: $f^{-1}(B) \in \beta$.
- 8. Find a sequence of real valued nonnegative function f_n on [0,1] so that

$$\lim_{n \to +\infty} \sup f_n(x) = +\infty, \quad \forall x \in [0, 1]$$

and

$$\lim_{n \to +\infty} \int_{[0,1]} f_n(x) dx = 0.$$