Analysis Prelim

August 25, 2014

Solve any 5 OF the next 7 Problems

1. (a) State Lusin's Theorem.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Lebesgue measurable function. Prove that there exists a Borel measurable function $g: \mathbb{R} \rightarrow \mathbb{R}$ such $f=g$ a.e. (with respect to the Lebesgue measure).
2. (a) Give the definition of weak convergence in a Banach space.
(b) Give an example of a (strongly) closed set that is not weakly closed and justify your example.
3. Let f be an absolutely continuous function on $[0,1]$, such that $f(0)=0$ and

$$
\int_{0}^{1}\left|f^{\prime}(x)\right|^{2} d x<\infty
$$

Prove that

$$
\lim _{x \rightarrow 0+} \frac{f(x)}{\sqrt{x}}
$$

exists and calculate the value of this limit.
4. Calculate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} n^{3} x^{3 / 4}\left(1+n^{4} x^{2}\right)^{-1} d x
$$

and justify your work.
5. (a) Give the definition of the convergence in measure.
(b) Let $\left\{f_{n}\right\}$ be a sequence of functions on \mathbb{R} that converges to a function f in measure, let $p \geq 1$, let $g \in L^{p}(\mathbb{R})$ and suppose that $\left|f_{n}(x)\right| \leq g(x)$, for all $n \in \mathbb{N}$ and all $x \in \mathbb{R}$. Prove that $\left\{f_{n}\right\}$ converges to f in the norm of $L^{p}(\mathbb{R})$.
(c) Give an example of a a sequence $\left\{f_{n}\right\}$ in $L^{p}(\mathbb{R})$ that converges to a function f in measure but not in the norm of $L^{p}(\mathbb{R})$.
6. (a) State Fubini's Theorem.
(b) Apply Fubini's Theorem to calculate

$$
\int_{E} \frac{y}{x} e^{-x} \sin x d \mu
$$

where μ is the product of Lebesgue measure on \mathbb{R} with itself, and $E=\{(x, y): 0 \leq y \leq \sqrt{x}\}$.
7. Let $\left\{f_{n}\right\}$ and f be functions in $L^{2}(\mathbb{R})$. Prove that $\left\{f_{n}\right\}$ converges to f strongly (in the norm of $L^{2}(\mathbb{R})$) if and only if $\left\{f_{n}\right\}$ converges weakly to f and $\left\|f_{n}\right\| \rightarrow\|f\|$.

