

Michigan Epsilon Chapter of Pi Mu Epsilon

Problem of the month: January 2020

Roots and nonzero coefficients

Suppose we have a fifth degree polynomial

$$
p(x)=\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)\left(x-r_{4}\right)\left(x-r_{5}\right)
$$

where the roots r_{1}, \ldots, r_{5} are distinct integers. If we expand $p(x)$, what is the smallest possible number of nonzero coefficients?

For example, if

$$
p(x)=(x-1)(x-2)(x-3)(x-4)(x-5)
$$

and we expand to get

$$
p(x)=x^{5}-15 x^{4}+85 x^{3}-225 x^{2}+274 x-120
$$

we see that all six coefficients are nonzero.
However if instead we have

$$
p(x)=x(x-6)(x+1)(x+2)(x+3)=x^{5}-25 x^{3}-60 x^{2}-36 x
$$

then we see only four nonzero coefficients. Can you choose distinct integers r_{1}, \ldots, r_{5} so that $p(x)$ has only three nonzero coefficients? Can you get only two nonzero coefficients?

Please turn in your solutions to Patrick Bennett, by noon on Friday January 31, 2020. Strive for clarity, neatness and legibility! Solutions may be turned into the Math Dept office in 3319 Everett Tower. Please include your name and email address. Electronic submissions may be sent to patrick.bennett@wmich.edu. If you are currently taking a math class, please include the instructor's name and the course number.

